Effects of organic anion, organic cation, and dipeptide transport inhibitors on cefdinir in the isolated perfused rat kidney.
نویسندگان
چکیده
Cefdinir (Omnicef; Abbott Laboratories) is a cephalosporin antibiotic primarily eliminated by the kidney. Nonlinear renal elimination of cefdinir has been previously reported. Cefdinir renal transport mechanisms were studied in the erythrocyte-free isolated perfused rat kidney. Studies were performed with drug-free perfusate and perfusate containing cefdinir alone to establish the baseline physiology and investigate cefdinir renal elimination characteristics. To investigate cefdinir renal transport mechanisms, inhibition studies were conducted by coperfusing cefdinir with inhibitors of the renal organic anion (probenecid), organic cation (tetraethylammonium), or dipeptide (glycylsarcosine) transport system. Cefdinir concentrations in biological samples were determined using reversed-phase high-performance liquid chromatography. Differences between treatments and controls were evaluated using analysis of variance and Dunnett's test. The excretion ratio (ER; the renal clearance corrected for the fraction unbound and glomerular filtration rate) for cefdinir was 5.94, a value indicating net renal tubular secretion. Anionic, cationic, and dipeptide transport inhibitors all significantly affected the cefdinir ER. With probenecid, the ER was reduced to 0.59, clearly demonstrating a significant reabsorptive component to cefdinir renal disposition. This finding was confirmed by glycylsarcosine studies, in which the ER was elevated to 7.95, indicating that reabsorption was mediated, at least in part, by the dipeptide transporter system. The effects of the organic cation tetraethylammonium, in which the ER was elevated to 7.53, were likely secondary in nature. The anionic secretory pathway was found to be the predominant mechanism for cefdinir renal excretion.
منابع مشابه
Digital fluorescence imaging of organic cation transport in freshly isolated rat proximal tubules.
The secretion of cationic drugs and endogenous metabolites is a major function of the kidney. This is accomplished by organic cation transport systems, mainly located in the proximal tubules. Here, we describe a model for continuous measurement of organic cation (OC) transport. In this model, organic cation transport in individual freshly isolated rat proximal tubules is investigated by use of ...
متن کاملOATP and MRP2-mediated hepatic uptake and biliary excretion of eprosartan in rat and human.
BACKGROUND Eprosartan is an angiotensin II receptor antagonist, used in the treatment of hypertension and heart failure in clinical patients. The objective of this study was to clarify the mechanism underlying hepatic uptake and biliary excretion of eprosartan in rats and humans. METHODS Perfused rat liver in situ, rat liver slices, isolated rat hepatocytes and human organic anion-transportin...
متن کاملTransport of temocaprilat into rat hepatocytes: role of organic anion transporting polypeptide.
The mechanism for hepatic uptake of temocaprilat, an angiotensin-converting enzyme inhibitor that is predominantly excreted into bile was studied using isolated rat hepatocytes and COS-7 cells expressing the organic anion transporting polypeptide (oatp1). The uptake of temocaprilat into isolated rat hepatocytes exhibited saturation with a Km of 20.9 microM and a Vmax of 0.21 nmol/min/mg protein...
متن کاملShort Communication DIGITAL FLUORESCENCE IMAGING OF ORGANIC CATION TRANSPORT IN FRESHLY ISOLATED RAT PROXIMAL TUBULES
The secretion of cationic drugs and endogenous metabolites is a major function of the kidney. This is accomplished by organic cation transport systems, mainly located in the proximal tubules. Here, we describe a model for continuous measurement of organic cation (OC) transport. In this model, organic cation transport in individual freshly isolated rat proximal tubules is investigated by use of ...
متن کاملSex differences in the mRNA, protein, and functional expression of organic anion transporter (Oat) 1, Oat3, and organic cation transporter (Oct) 2 in rabbit renal proximal tubules.
Sex differences in transport of the organic anion (OA) substrate p-aminohippurate (PAH) and the organic cation (OC) substrate tetraethylammonium (TEA) have been recognized for some time. In the rat kidney, androgens up-regulate and estrogens down-regulate PAH and TEA transport, which correlate with similar changes in mRNA and protein expression for the renal basolateral membrane transporters or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 47 2 شماره
صفحات -
تاریخ انتشار 2003